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ABSTRACT

The RNG-based algebraic turbulence model, with a

new method of solving the cubic equation and applying

new length scales, has been introduced. An analysis has

been made of the RNG length scale which was previously

reported and the resulting eddy viscosity has been corn-

pared with those from other algebraic turbulence mod-

els. Subsequently, a new length scale is introduced which

actually uses the two previous RiNG length scales in a

systematic way to improve the model performance. The

performance of the present RNG model has been demon-

strated by simulating the boundary layer flow over a fiat

plate and the flow over an airfoil.
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Ad constant (=0.2)
i 3_ 1.594_

b constant _=_d _-_-_--j
c airfoil chord length

wave length cut-off constant (75-200)
skin f_iction coe$cient

turbulence model constant (=0.09)

Klebanoff's intermittency factor

Heavyside function

mixing length

mixing length from Ref. 2
mixing length from Ref. 4

integral scale of turbulence

Reynolds number based on chord length

localReynolds number

Reynolds number based on local momentum

thickness

Renormalization Group

time

free stream turbulent intensity

stream-wise velocity component

mean velocity component in streamwise direc-
tion

z coordinate direction along chord line

y coordinate normal to the wall

a outer model constant (=0.0068)

/_ turbulence model constant (= _;)

5 boundary layerthickness

5" displacementthickness

e turbulenteddy viscosity

0 momentum thickness

von Karman constant (=0.4)

v0 kinematic viscosity

vt the provisionaleddy viscosity

effectiveviscosity

p density
._?==_--=%=-.

_r wallfrictionparameter (= _L__)

7" shear stress

II Coles pressuregradient parameter

A! wave number

_uverscrivfs

+

normalized quantity

time averaged quantity

law-of-the-wallcoordinate

,_ubscripts

0

i

0

e

rngl

rng2
bl

laminar quantity

inner layer
outer layer

turbulent quantity

quantity at outer edge of boundary layer

based on length scale from Ref. 2

based on length scale from Ref. 4

based on length scale from Ref. 6

1. INTRODUCTION

Studies of the transition from laminar to turbulent

flow in the boundary layer of an airfoil were performed
in the 1940's and earlier, upon observing that extensive



laminarlayers existed on the forward portion of smooth

wings. However, in recent years only limited numbers
of turbulence models capable of simulating the laminar-
turbulent transition have been developed.

The drag of an object such as a fiat plate or an

airfoil with a smooth surface depends on the location of

the point of transition where the value of drag suddenly

changes from low-drag laminar-type flow to high-drag
turbulent flow. An incorrect estimation of the transition

point greatly decreases the level of accuracy in predict-

ing the flow characteristics farther downstream. There-
fore, the accurate prediction of drag by CFD methods

requires the correct prediction of the transition location.

In 1986, Yakhot and Orszag 1 proposed the appli-

cation of the renormalization group theory to turbulence

modeling for transition simulation. Later Martinelli and

Yakhot 2 proposed an algebraic and differential k- •
model based on the RNG theory of Yakhot and Orszag 1

and applied the algebraic RNG model to transonic flows.

Lund 3 investigated the algebraic RNG model and used

a simple cubic equation for v after imposing reasonable

assumptions. Kirtley 4 used a quartic equation based

on the cubic equation and applied the model to three
dimensional turbomachinery using Newton's method to

find the roots of the quartic equation.

The main reason for using a quartic equation is
due to the existence of more than one solution to the

cubic equation whose locus of real roots consists of two

branches. By special transformation to the quartic equa-

tion, a difficulty of finding one non-trivial solution was
simply eliminated and Newton's method was used to
evaluate the solution to the transformed quartic equa-

tion of Kirtley 4. Therefore, both branches have been

retained to avoid a jump discontinuity in the distribu-

tion of effective viscosity, and the solution was evaluated

according to some forcing conditions given by Lund 3

[Figure 1]. Kirtley 4 successfully used a method stem-

ruing from direct evaluation of the cubic equation with
the jump condition and showed improvements over the
Baldwin-Lomax model with modification for wake and

separated flows.

In the present study, one of the solution branches

that shows less physically important behavior than the

other real solution branch has also been eliminated and

the solution has been evaluated according to a general

solution formula for a cubic equation which involves

algebraic manipulation of complex numbers. The re-

sulting jump discontinuity in normalized viscosity does
not show any negative contribution to convergence in

the main flow solver [Figure 2]. The present method is

compact in size and simple in analysis since it only re-

quires the evaluation of the cubic equation at each mesh

point. Due to the straightforwardness of the present
analysis, the implementation effort for coding has been

minimized. The main intent of the present study is to

provide a better understanding of the model's transition

behavior and to provide extensive flow results in order to

check the performance of the model on boundary layer
transition simulation as well as turbulent simulation.

2. DERIVATION OF THE MODEL

The mathematical form of the RNG theory is given

by Yakhot and Orszag 1 as

[3 1.594_ _] 1IS
(1)

where H(z) is a Heavyside function defined as follows:

H(z) = { z, for z_> O;O, for z < O.

In Equation (1), v and v0 are the effective and kinematic
viscosity respectively, Ad is a constant (=0.2), and A! is

a wave number corresponding to the integral scale of the

turbulence in the inertial range. A cut-off constant de-

rived by Yakhot and Orszag I is represented by C (=75-

200), and g is the dissipation rate.
Lund 3 derived the following cubic RNG formula-

tion from Equation (1) after a series of simplifications:

P= [I+H(b(_-)4PD_-C)] _13
(2)

where L] is an integral length scale, and vt can be de-

termined from Prandtl's mixing length theory:

0fi
_'=t21 _ I (3)

uy

Also by applying the fully turbulent condition,

that is

P--_ Pt+ 1_, Pt for Pt>>l (4)
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the integral and mixing length scales ratio can be rep-
resented as follows:

1b = 1+ _(C- 11_ 1 (5)

which leads to the final governing equation for effective

viscosity not only valid in laminar regime but also in the

transition/turbulent regime, that is

P= [1 + H (P_,=-C)] 1/_ (6)

Equation (6) isfurthersimplifiedas

_,3./,_p + (C - 1)= 0

with a positive H function condition,

(7)

_,=-c > o (8)

or

= 1 + "_y16)'

*¢2(Y/6)6 I0_[ (11)P' ---[1+/3(9/6)]2 y

StockandHaaseSrewroteyl_]asfunctionofy/6using

Coles velocity profile formulation:

Y_ =-E (12)

The expressionfor y ]_ can be approximated by taking
l--

itsmaximum.

The mixing lengthforwallbounded flowwas taken

from Maxtinelliand Yakhot 2

11-- _Y (9)
1-i-_(y/6)

fortransitionpredictionand from Kirtley4 inturbulent

flow region.

(10)

The reasonsfor using these two length scaleswill

be discussedin Section3 and 4.

Y . Y Y
Q = _ sm(_), for 0 < _ < 1

where, the maximum value of Q can be obtained by

Newton's method;

(2[._,=_--1.82 at Y'_°------_,_0.646 (13)
-

Using thesevalues,Equation (12) becomes

y[0ul "- -_ [1.82rl + 1] (14)10yi-

The result of substituting Equation (14) into (11) is:

3. EVALUATION OF RNG LENGTH SCALE

The RNG lengthscaleoriginatingfrom Martinelli

& Yakhot 2 [Equation (9)] has been analyzed using

the Stock & Haase 6 analysisand compared with the

Baldwin-Lomax 6 model.

By substitutingEquation (9) into Equation (3),

the provisionaleddy viscosity,i.e.,the maximum eddy

viscosityfzom RNG model, can be written as

(0.372)2(0.646)6 U,¢ [1.s2n+ 1]
vt -_ vt,,,gl = [1 + (4.44)(0.646)] 2

or

6_ [1.82II + 1]v,,,, 9, = 0.006 U, -_- (15)

The same procedure has been performed by Stock
and Haase 5 for the Baldwin-Lomax 6 turbulence model's

outer layer viscosity formulation yielding,



v,,_,_ 0.0173Ue _ [1.82H+ I] (16)

Using Equations (15) and (16), the ratio of v,,rngz and

V,,ba is:

v,,,,g_____A___ 0.006 _ 0.35 (17)
V,,b_ 0.0173

From Equation (17), it is shown that the RNG viscosity

predicted by the length scale of Equation (9) is about
one third of that from the first Baldwin-Lomax outer

model of Equation (16) that covers the near wall and

attached flow regions. Consequently, it can be concluded

that the length scale of MartineUi and Yakhot 2 predicts

a much lower value of the eddy viscosity than the length
scale of Baidwin-Lomax outer model. Also it has been

shown that this length scale resulted in very low skin

friction coefficients for flat plate and airfoil flows.

The length scale of Kirtley 4 [Equation (10)] has
been introduced in the current RNG model in combi-
nation of that of Martinelli et al. 2. The same analysis

of Stock & Haase s can be performed again. Since the

maximum length scale occurs for Itanh z]ma= = 1 in

Equation (10), the maximum v¢ for the model is ob-

tained from Equation (3).

(18)

or

for provisional RNG viscosity. Again, using Equa-

tion (14) and corresponding y,_/6 value,

or

(19)

From Equations (16) and (19),

vt,_.92 0.0125
_- _0.72 (20)

vt,bZ 0.0173

From equation (20), the length scale of Kirtley 4 shows

a more comparative magnitude of eddy viscosity than

4

the previous RNG lengthscaleof Martinelli& Yakhot 2

[Figure3]. Also, the resultsof skin frictionfor a flat

plate and an airfoilusing the length scaleof Kirtley4

are in betterquantitativeagreement with experimental

data than the resultsobtained with the length scaleof

Martinelli& Yakhot 2. However, one drawback in us-

ing the length scaleof Kirtley4 isthat it predictsthe

laminar-turbulenttransitionpoint too early,especially

for the flows with relativelylow freestream turbulence

intensities.

After the testofthe RNG model using the length

scales of Martinelli et ai2 (lz) and Kirtley 4 (!_) for flow

over a flat plate and over a NACA 0012 airfoil, the pre-

vious analysis has confirmed that the length scale, !1,

from Equation (9) underpredicted the skin friction up
to 30% but it accurately predicted the onset of transi-

tion from laminar to turbulent. Use of the length scale,

/2, from Equation (10) provides excellent agreement of

skin friction in the fully turbulent region but predicts

the transition point too early. Due to the sudden in-

crease of the length scale near the wall (0 < y/6 < .2)

in the boundary layer, the solution sometimes diverges

just after the model has been turned on.

4. IMPLEMENTATION OF RNG MODEL

Based on the analysisof the RNG length scales

from the previoussection,a new lengthscalewhich pre-

dictsthe transitionpoint accuratelyand also produces

the correctturbulent skin frictioncoefficientis intro-

duced.

Because the transitionlocation(y/6)trbetween in-

ner and overlaplayerinsidea turbulent boundary layer

isnot known initiallyand itdepends on many factors,

such as initialfreestream turbulence,Reynolds num-

ber, pressure gradient,surfacecurvature, and surface

roughness,the actualgenerationof a singlelengthscale

may not be easilydetermined. Consequently, such an

attempt was not made in the present implementation.

However an RNG model isintroduced, which makes a

systematic use ofthe previous two length scalesone at

a time as follows:

The length scale,11 from Equation (9),is used

firstto find the accurate transitionlocation and, once

the positiveH functionconditionissatisfiedfrom Equa-

tion(8),the lengthscale,Iiisreplaced by 12from Equa-

tion(10)forthe regionwhere the RNG has been turned

on.

From the solutionofEquation (7)and accompany-

ing conditionEquation (8),the model isnot turned on

untilthe provisionaleddy viscosityreachesthe following



value:

Po
(21)

where the provisionalviscosityiscalculatedfrom the

Equation(3)asfollows:

where

lx, for transition prediction;I = 12, for turbulent RNG viscosity evaluation.

The aboveimplementationoftwo lengthscalescan be

depictedonlyifone new lengthscalewereusedasshown

inFigure4 where thenew lengthscalefollowsthe11for

y/6 <_ (yl_),,. and 12 for y/6 > (y/6),,-.
Intheactualimplementation,unliketheBaldwin-

Lomax model wheretheturbulentviscosityiscalculated

fortheentirecomputationaldomain,thefollowingalgo-
rithmwas usedinorderto avoidunnecessarycomputa-

tionforturbulentviscosityinthe laminarregion:
Sincethe transitioncriterionforvt isknown in

Equation(21),forthelaminarregion,onlythecalcula-
tionofEquation(3)has been necessaryand the eval-
uationofthe RNG viscositythroughthe Equation(7)

can be bypassedwith the solutionof _ -- 1,which is

the laminarviscosityvalue. Once the transitionhas

been triggeredby the conditioninEquation(8)and vt
reachesthecriticalvalueinEquation(21),evaluationof

the RNG viscosityvia Equation(7)isperformedwith

utcalculatedusing12.
With itsnon-iterativeevaluationscheme of the

RNG viscosityfrom the cubicequation,[Equation(7)],

the abovelengthscaleimplementationshows much im-

provedcomputationalresultsrelativeto the previous

one usingeitherone oftheabove mixinglengths.

5. COMPUTATIONAL RESULTS

The Reynolds-averagedNavier-Stokesequations

(continuity,momentum, and energyequations)can be
expressedinthefollowingconservationlaw form:

__ OFj 0GjOQ+_=__
Ot Ozj Ozj

where Q is a vector containing the conservation vari-
ables,

where Fj vectors represent the invicid flux vectors,

r .u, ]Fj m | pui uj "k/_ij

[ (E + v) j

and the viscous flux vectors Gj are

I O]Gj = _'ij

Lutrjt - qj J

The eddy viscosity concept and the algebraic forms of
the Renormalization Group turbulence model are used
for turbulence closure. A simple algebraic eddy viscosity
model based on the Renormalization Group turbulence
model is used for closure of the compressible Reynolds

averaged equations. Two turbulent boundary layer flows
using the RNG turbulence model with the mixing length
proposed earlier were solved together with the Navier-
Stokes equations for compressible flows in full conserva-
tion form. The numerical method is a finite difference
discretization with the Beam and Warming _ approxi-

mate factorization algorithm to integrate in time to a
steady state. The calculations were performed on a Cray
YMP computer at NASA Lewis Research Center.

5.1 Flow over a fiat plate

Experimental data for the flow over a flat plate
with a zero pressure gradient can be found in Sohn
& Reshotko s. The Mach number was 0.2 and the

Reynolds number based on plate length was approxi-
mately 2.3 x 107 with a physical dimension of 16 feet.
The corresponding computational domain, covering only
the upper half of the plate, starts from the free stream
1 foot ahead of the leading edge and extends to the end

of the plate in the streamwise direction. The domain
extends 3 feet high from the wall in the normal direc-
tion. A grid of 111 x 81 points was used with about
one third of these located within y+ _< 1000. About 15

grid nodes were put within y+ _< 50 in the normal di-
rection. The streamwisegridwas denselypackednear



the leading edge for an accurate prediction of the large

gradients in the vicinity of the wall and the leading edge

[Figure5].
In order to check the grid-independence and also

obtain a more accurate prediction of the transition lo-

cation, the calculation had been repeated with a finer

grid of 221 x 161 points. No variation of transition lo-
cation had been obtained. The converged solution was

obtained after approximately 10,000 iterations.

As shown in Figure 6, the transition can be lo-
cated where the non-dimensional boundary layer thick-

ness along the streamwise direction suddenly increases

from a constant value. In the figure, the present com-

putation clearly shows similar trend and agrees quali-
tatively with experimental data of Hanson 9. The com-

putational results for the skin friction coefficient and

the shape factor are compared with experimental data.

Figure 7 shows the local skin friction coefficient and Fig-
ure 8 shows the shape factor distribution. The solid line

represents the computational results using the present
RNG model, and the symbols represent the experimen-
tai data under different free stream turbulence intensi-

ties. The analytic results for laminar flow and a semi-

empirical correlation for turbulent flow are also plotted.

The results are in good agreement with the experiment,

and it is shown that the present RNG model, without

much dependence on empiricism, can accurately mimic

the detailed phenomena of laminar-turbulent transition.

Figure 9 shows the turbulent boundary layer velocity

profile near the end of the plate showing excellent agree-
ment with a correlation of Musket 1° in both inner and

outer layers.

Setting up a convergence criteria for RNG simula-
tion prior to computation is not straightforward since,

as plotted in Figure 10, the final residual at convergence
is not the minimum value throughout the computation

due to a residual jump after the RNG model has turned

on. In the figure, two curves are depicted from two sim-

ulations using different time step control; namely, time
accurate simulation with constant time-step size (At=5)

and local time stepping simulation with variable time-

step size (maximum time-step size allowed during the

run, Atrial, is set to 20). The same skin friction results
from the two cases were obtained after 15000 iterations

for At=5 and 6000 iterations for Atrnax=20. The ir-

regular convergence pattern after the model turned on
for Atrna_=20 is due to larger time step and/or the lo-

cai time stepping function of current code which also

started after RNG has turned on. Meanwhile, the time

accurate execution shows more regular pattern. In both

cases, the sudden jumps in the residual are due to the

jump discontinuity of eddy viscosity in RNG formula-
tion. It should be noted, however, that the local distur-

bance due to switching on the model at transition region

does not deteriorate other regions and overall computa-
tion remains stable.

5.2 Control of transition

The present RNG model uses the analytic rela-

tion of the 6/Ymar in its length scale when determin-

ing the provisional eddy viscosity. It has been observed
that, by increasing or decreasing 6/y,_a= from its stan-

dard value (=1.548), the change of the transition loca-
tion can be simulated numerically as if the flow is in a
different environment which affects the transition. The

two computational results plotted in Figure 11 and 12
as dashed and dotted lines are RNG results obtained

by using different boundary layer thickness parameters,

tS/yrna=. The results obtained by a 25% increase and de-
crease of $/yrnaz show good qualitative agreement with

experimental data obtained with higher and lower free
stream turbulence intensities, respectively. This con-

firms that, as mentioned earlier, this parameter can be
used to predict the transition location under different

flow environments which affect the transition location.

5.3 Flow over a NACA 0012 airfoil

Another calculation was performed for the flow

over a NACA 0012 airfoil with zero lift in order to test

the present turbulence model for a flow with a pressure

gradient. The experimental data considered here can
be found in Becker 11. The air speed was 230 mph and

the Reynolds number based on the airfoil chord was ap-

proximately 1.0 x 107 with a chord length of 5 feet and
a maximum airfoil thickness of 12% chord. The corre-

sponding computational domain covers the entire airfoil

starting from the free stream at one chord length ahead

of the leading edge and extending to 5 chord lengths
in the streamwise direction. The domain extends one

chord length from the wall in the cross-stream direc-

tion. A grid consisting of 358 x 100 points was used,
with about one- third of these located within y+ < 1000

in cross-stream grid nodes. The streamwise grid has

also been densely packed near the leading edge for an

accurate prediction of the large gradients in that region

[Figure 13].

The grid-independence was checked by refining the

grid in both directions. Two hundred more grid points
were added in the streamwise direction. In the direc-

tion normal to the stream, more grid nodes have been

included near the wall which reduces the y+ value to

below one. The converged solution was obtained after

approximately 6,000 iterations.

The computational results for the skin friction co-



efficient and boundary layer velocity profiles were com-

pared with experimental data. Figure 14 shows the
local skin friction coefficient, and Figure 15a through

Figure 15c show the boundary layer velocity profiles at
different streamwise locations. The solid line represents

the computational results using the present RaNG model,
the symbols represent the experimental data. Since the

experiment was performed in a high speed wind tun-
nel with very low free stream turbulence (_- 0.01%),

the use of the standard value of 6/yma= [Equation (13)]

resulted in the transition location being predicted at

4% chord while the experimental value is approximately

15% chord. This is consistent with the fact that, from

fiat plate results, the standard value of _/Yma= predicts

the experimental transition location with relatively high
turbulence intensity which usually triggers early tran-

sition (see Schlichting12). The transition location has
been delayed by decreasing the 6/y_a_ value following

the earlier analysis, and the transition location of 15%

chord was obtained with 6/yma_ 40% lower than the

standard value.

In Figure 16, the pressure coefficient has been com-

pared with experimented data for the upper surface of
the airfoil. The results indicate good agreement with

the experimental static pressure distribution along the
streamwise surface.

transitiontofullyturbulentflowwhich can cause numer-

icalinstability.

4)A lengthscalewhich usesthe two previousRNG

length scalesin a systematicway to preservethe merits

of the two scalesisintroduced. This new length scale

improved the model's performance inpredictingtransi-

tionaswellasthe turbulentquantitiesasshown through

a flatplateand an airfoilcalculation.

5) For separated flows or strong adverse pressure

gradient flows,the analytic study of the RaNG length

scaleshows the need to modify eitherthe RNG length

scales,or the method to evaluatethe provisionaleddy

viscosity,inorderto avoid too largeofan eddy viscosity

value.

6) The present model's capability of predicting
the transition location under different flow conditions

has been introduced and delivers satisfactory results for

flows with different free stream turbulence intensities.

7) The fact that the present RNG model does con-
rain less experimental constants or adjustments, and

yet gives accurate transition predictions as well as fully

turbulent predictions with its simple algebraic formu-

lation makes the model general, realistic, cost-efficient

and comparable to the other low-Reynolds number two

equation turbulence closure models.

6. CONCLUSIONS

The renormalization group algebraic turbulence
model was introduced in order to test its performance on

boundary layer transition simulation. The new imple-
mentation method enables the use of two different length

scales in systematic way in order to predict transition lo-

cation better and also produce accurate turbulent flow

quantities. The followings are detailed conclusions of

the present analysis:

1) On the basis of the boundary-layer results, it

was shown that dropping one solution branch of the cu-

bic equation derived from the RING theory does not af-

fect the performance of the model nor the convergence
of the Navier-Stokes calculation.

2) The analytic study and computational results
show that the RNG length scale introduced by Mar-

tinelli and Yakhot _ provides excellent predictions of the

transition location, but it underpredicts the magnitude

of eddy viscosity resulting in a lower skin friction coef-

ficient.

3) The RNG length scale introduced by Kirtley 4,

provided excellent predictions of fully turbulent quanti-

ties, but indicated an early transition location and rapid
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APPENDIX

Implementation to PARC code

The renormalization group theory (RNG) turbu-

lence model in the present paper has been successfully

implemented into the two- and three-dimensional PARC
code with an additional subroutine RGTURBW and one

function subroutine EDR. The user can select the RNG

turbulence model by setting the namelist input param-

eter IMUTUR=4. Also in order to correctly predict the

transition location under different flow conditions, such

as free stream turbulence or surface roughness etc., the

user can set a new namelist input parameter D2OYMX

within 4- 40% of its default value (=1.548) to move the

transition point. The default value of D20YMX can sim-
ulate a turbulence intensity of about 2% for the flow over

a flat plate with zero pressure gradient. The user can
set a lower value than 1.548 for D20YMX to simulate

the flow with a lower flee stream turbulence.
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Figure 3. Comparison of RNG viscositys with outer-eddy viscosities of Baldwin-Lomax turbulence model.

0.100

0.075

LF6 0.05O

0.025 /i I

i

0.00 _).

• ..... Mazrtinelli&Yakh_ 4
J

i

0.25 0.50 0.75
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Figure 5. Computational grid for the flow over a flat plate.
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Figure 13. Computational grid for the flow over a NACA 0012 airfoil.
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Figure 14. Computed local skin fi'icfion coefficient along with experimental data and
lheoretical correlation. - NACA0012 Airfoil
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